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Reciprocity and cross coupling of two-phase flow in porous media from Onsager theory
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The symmetry properties of the permeability matrix in the macroscopic transport law for two-phase immis-
cible flow in porous media are investigated. The porous medium is treated as a single, closed thermodynamic
system being forced by piston reservoirs. This construction is used to relate the Darcy fluxes to the time
derivatives of the piston motion, and to identify the fluxes and forces in the Onsager sense. When the surface-
tension forces that develop on the fluid interface are linear in the interface displacement, Onsager’s theory is
directly applicable and the permeability matrix must be symmetric. This argument is extended to show that
reciprocity still holds when surfactants modify interface proper{i€4.063-651X99)08310-5

PACS numbedis): 47.10+g 47.11:+j, 05.40—a,

I. INTRODUCTION Il. REVIEW OF ONSAGER'S THEORY

The linear Darcy laws governing two-phase flow in po- Before we consider the reciprocity associated with our
rous media have recently received broad attention—botlspecific problem in two-phase hydrodynamics, we first
theoretically[1-4] and experimentallf5-10. These laws briefly review the basic requirements and results of the gen-
have the conventional form eral Onsager theofyi1,12. A particularly clear and succinct

review of the derivation has been given by de Giidd]. In
the simplest version, the theory deals with closed systems
JiZE kij(4) f, 1) not far from equilibrium and described by a set of variables
j 7i {a;} that describes deviations from equilibrium. The theory
addresses the symmetry properties of macroscopic linear

transport laws having the form
wherei andj label the phases and the fluid curredisare P g

linked to the pressure gradients, or forcks,via the perme- Ji=LX;, 2)

abilities «;; and fluid viscositiesy; . Two main issues have

been addressed in the literature: the range of validity of thesehereX; is a force that induces a curredit and where the

linear Darcy equations and the question of whether the Onk;’s are constant coefficients. Summation over repeated in-

sager reciprocity relatiow;; / ;= ;i / »; holds. dices is implied both here and throughout. When the indices
While continuum theory based on the Stokes equationefer to the fluid phases they take the valuesl,2. The

[2,4] has been used to address these questions, it is of thefsrce X; is required to be conjugate to the currdntin the

retical interest to show that Onsager thepty—13 applies sense that

directly. This approach is also mathematically simpler than

the techniques based on the continuum equations. As an ex- - IS o
. . . .. . . . =T and Ji—ai, (3)
ample of this(relative) simplicity of application, we discuss a3,
the cases where the interfaces are allowed to move reversibly _
and where the interfaces have surfactants on them. where S=$({a;}) is the entropy of the system. For the

In order to apply Onsager theofyl3], two theoretical theory to apply,a; must be small enough that the force is
components is needed. First, the entropy production in termeell approximated by; = (°S/ da da;)oa; where the 0 sub-
of the forces and fluxegheref; andJ;) is needed. Second, script denotes the equilibrium state in whiah=0 for all i;
the fluxesJ; must be identified as time derivatives of statei.e., the theory requires the force to be linear in the state
variables characterizing the system on the level of coarsparameters;. The entropy productiofs, which is positive
graining used. Being able to identify appropriate state variin a closed system, takes the form
ables is the crux of any application of Onsager’s theorem.
Here, this is accomplished by interpreting the driving pres- . JS.
sures as forces that stem from external spring-piston devices. S= a_aiai:‘)ixi' )

The present paper complements the study in R&F,
which is based on the appropriate Stokes boundary-valu€hus, the definition of the appropriate currents and forces
problem. The theoretical approach is fundamentally differ-can also come from working out an analytical expression for
ent, but the main results are the same, save for the presetiite entropy production rather than determining the function
application to the case where the fluid-fluid interface dynam-S({a;}) directly. Given these requirements on the currents
ics is complicated by the presence of surfactants. and forces, the theory provides the fundamental result
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Lij:Lji' (5)

The remarkable aspect of the Onsager theory is that the result
Eq. (5) is not based on any particular macroscopic property
of the system, but is only a result of the time-reversal sym-
metry of the underlying microscopic equations of motion
(Newton’s laws or the Schdinger equation The laws of
Eq. (2) may thus describe almost any kind of linear response
that produces entropy.

We wish to emphasize the following point. The connec-

tion between MICroscopic dynamlcs“and macroscopic tranqéngthL and cross-sectional aréa The porous material itself is not

port is made through the so-called “Onsager regression Nyspoun. The driving forces giving the external pressure gradients are

pothesis.” This states thanicroscopic fluctuations inj@  represented by the springs acting on the pistons. The total piston-

when averaged, decay in time according to the same lawsample system is energetically and materially closed. The average

Egs. (2), that control the macroscopic transpo@nsager  macroscopic flux of each fluid is given by the time rate of change of

[11], deGroot[13], and others have traditionally presented the piston displacements, anda,.

this connection as an additional postulate of the theory.

However, it is a simple exercisgl4,19 to show that the the totally relaxed state. It is also implicitly assumed that all

regression hypothesis is generally valid whenever the extefesistance to flow comes from the porous material itself,

nal forces applied to the system are sufficiently small to warwhich is equivalent to assuming that the “pipes” connecting

rant linear decay laws. The average in the statement of thghe porous material to the piston chambers in this thought

regression hypothesis is an equilibrium ensemble averagsonstruction have large diameters.

constrained so that the system is in a definite state at some We now determine an expression for the entropy produc-

definite initial time. The regression hypothesis is a fundation in the porous system, i.e., the system shown in Fig. 1

mental law of linear-response theory equivalent to theexcluding the pistons and springs. This is a forced nonequi-

fluctuation-dissipation theorem. librium system and the global Gibbs relation has the standard
A useful fact easily proven is that any linear recombina-form

tion of the forces and fluxes that leaves E4).invariant will

also possess linear laws of the form E2) that satisfy Eq. TdS=dE+dW, (7)

(5). Moreover, the system may be described in any number ) ) .
of variables so long as E¢4) and Eq.(2) are fulfilled. where S is the entropyE the internal energy of the fluids,
anddW the work performed by the fluids. Being an inequal-

ity we cannot use this relation to determine the entropy pro-
IIl. THE FIXED-INTERFACE CASE duction. In order to obtain this we shall need to employ the

We begin with the simplest case where the interface be@ssumption of docal equilibrium and the corresponding lo-
tween the two fluids is kept fixed since this will bring out the €@l Gibbs relatior{16]
key parts of the argument and pave the way for the more -
realistic case where interface deformation is permitted. By Tds=de+pdv, ®)
“fixed interface” we mean simply that the interface retains heres ande are the entropy and ener er unit mass while
its shape when force levels are changed; however, the flui\A’, e . p}’ gy per uni wh
molecules attached to the interface will, in general, be movP iS the pressure and=1/p is the specific volume where
ing along parallel with the interface. Physically this corre-'S tAhe mass density. The conservation of mass can be written
sponds to assuming an infinite capillary number. pdv/dt=V -u whereu is the local flow velocity and so the

In order to describe a Darcy flow which is driven by ex- usual assumption of incompressible flow allows the pressure-
ternal pressure gradients within the framework of the abovavork term to be neglected. Under such conditiogss a
theory, we have devised a system of springs and pistons dgnction of ¢ alone so that
shown in Fig. 1. The purpose of this thought construction is
to create a closed system for which the state variafags Js_dsde 1de ©
required by the Onsager theory are easily identifiable. The at de ot T at’
springs shown are assumed to have a long enough relaxation
time for the system to remain close to a hydrodynamicBecausep is constant in time for incompressible flow, the
steady state. For simplicity, the piston cross sections ar@ntropy production can then be expressed

taken to be equal to the cross section of the porous safnple
so that ds d(ps) 1d(pe) 1dE
a = dVT = dV ~ 0

L — .

FIG. 1. Two fluid phases inside a sample of porous material of

Ji=—a; (6)

—f gyl 9pe) (10

is precisely the volume of fluid crossing unit area of the T2 9t
porous material in unit time wher@ represents the rate of
piston displacement. The minus sign arises becaysis  where the integration is taken over the entire system with the

measuring distance to the piston from the piston position irsprings and pistons excluded and we have performed a Tay-
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lor expansion iMMT=T-T, whereT is the average tempera- =0 (xy)
ture. The last term in Eq10) describes the entropy produc-
tion caused by the internal heat flow in the systéwiriting
the energy changépe/dt in terms of Fourier’s law it can be
shown to give a positive definite contribution to the entropy.

Since it is of relative ordeAT/T compared to thelE/dt "
term it can be neglected whenever temperature variations are F'C- 2. The surface={(x,y) represents the position of the
moderate. We have thus identified the condition under Whicifulu'd interface at any instant while the initial interface position is
Eq. (7) becomes an equality witdW=0. Note, however, _de_r_lot(_ed byz=0. The coordinates andy denote position along the
that the total systenffluids plus pistons and springss not initial interface.
changing reversibly. In that case the entropy production
would have been zero, which it is not. The system evolves
through nonequilibrium states, and only the assumption of a We now consider the case when interfaces are free to
local equilibrium allows the entropy to be computed. change shape. For the Onsager theory to apply, the response
The rate at which the springs perform work in moving themust remain linear in the force. Thus, phenomena such as
pistons is simply the product of the piston velocityg, and ~ burstlike changes in the interface cannot be treated this way.
the Spring forceksai where ks is a Spring constant. This What can be treated are small elastic deformations of the
power is simplyd E/dt, the energy per unit time put into the interface. In this case, the interface displacement is both lin-
porous sample. We assume that the inertial forces produce®fr and reversible in the applied force. In Refl, a condi-
as the springs relax are negligible compared to the drivingion is given on the amount of local capillary-pressure varia-
forces SO that Changes in kinetic energy are neg||g|b|e Comtlon that can be eXperIenced before contact |IneS move. In

pared to this spring power. The entropy production may thevhat follows, we assume that such a condition is respected
be written as and that the interfacgsnenisci) may stretch without signifi-
cant movement of the contact lines.
: Figure 2 shows an interface close to equilibrium, along
d_S_ K aia; 11 with the variables by which the interface is described. The
dat S 1 (12) dashed line denotes the interface positisn0 at zero forc-
ing, while the solid line denotes the positias { after a

) . . normal displacement from equilibrium. The coordinates
From this equation it may also be noted that a reverS|bI%mdy lie along the interface.

change of the system, under whid&/dt=0, corresponds to In identifying the entropy production, the difference from
theks— 0 limit. Thermodynamic forceX; and fluxesJ; sat- e fixed-interface case is that now not only the pistons, but
isfying the requirements of Onsager's theory may be identiysg the fluid interface will perform work on the fluids. By
fied directly from Eq.(11) as the fluid interfacewe always mean the layer of molecules
which is affected by the presence of the molecules of the
Ke _ other fluid. By choosing to consider the interface together
Xi==a; and J;=—aq;. (120  with the pistons as being external relative to the fluid bulk,
T we do not have to consider the internal entropy changes in
the springs or the configurational entropy changes of the in-
Having made this observation we see that the genera] |a\;\¢rface. Only the mechanical effect on the fluid bulk will be
Eq. (2) takes the specific form of the two-phase Darcy lawimportant, and the entropy production will, as before, be due

Eq. (1) with the identificatiorL;; = Txx;; /(7,AL) where the to viscous heating in the fluids alone. We will take the same
! HeT approach when studying interfaces with surfactants. The en-

ergy balance can thus be written

IV. THE FLEXIBLE-INTERFACE CASE

factor of?/(AL) arises becausg in Eq. (1) is the applied
force per unit volume of porous material so théat

=TX;/(AL). Since the conditions for the Onsager theory ?Xi‘]i_dE{/dt:?dS/dt, (14)
have been met, we immediately can write

where E, is the total surface energy of the interface. The
Kip Koy left-hand side represents the energy put into the fluids per
—=—, (13)  unit time due to the work of the pistons and interface while
KA the right-hand side represents the manner in which the in-
compressibly flowing fluids store such energy; namely, as
which completes the proof that permeabilities are reciprocaheat. As throughout the entire paper, viscous forces are as-
in the fixed-interface case. Though we have appealed to &umed to dominate inertial forces so that changes in the ki-
specific mechanical devigéhe pistons and springghe reci-  netic energy are negligible relative to the heat production.
procity result obtained in this simple argument is perfectlyThe interface energf, goes as
general because our ideal devices are outside the system be-
ing treated. A comparison of the above three-line argument E;=0A;, (15
to the relatively more involved analysis based on Stokes’s
equation[4] demonstrates one of the great advantages in usvhere A, is the total interface area and is the surface
ing Onsager’s theorem. tension[17]. The problem now is to characterize the changes
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in interface area using variables that can be identified as statfives thatQ"=Q. It is the matricesM and Q that properly
parameterga;} in the Onsager theory. . _ allow for the presence of surface tension.
We now treat the special case where the interface is a compining the two equations in E€1) by eliminating

plane before the springs begin to deb thatx andy are  x  ajllows the macroscopic flux to be expressed
Cartesian coordinatgsThe analysis is particularly straight-

forward and instructive for this case. The general case where  j—| x + MQ~1J,, where L=L—-MQ MT. (22
the initial interface is an arbitrarily curved surface is treated ¢

in the Appendix and gives similar results. Using a well- The coefficient matrix. controls the macroscopic flux when

known expression for surface area, we have the interface has reached its steady-state position at which
time J,= £«=0. The steady-state matrix can be identified
Ai:J' dxdyy1+(V{)2 (16)  as the fixed-interface matrix considered previously. The ma-

trix L describes the unphysical case of fluid-fluid coupling in

1 the absenceof surface tension.
1+ —(Vg)z} (17) The only effect of the interface having moved a small

2 distance to a new steady-state position is to change very
slightly the relative permeabilities. Since such a slight
change in permeability is proportional ¥, the effect of a
steady-state interface displacement is to produce a quadratic
force term in Darcy’s law. Thus, in the purely linear laws
where?=¢(x,y) represent the displacements from the initial considered here, the steady-state transport matris the
planez=0 and where the integral is over the initial plane. In same as if the interface remained fixed.
these expressions we have expanded the square root usingWe now make an order-of-magnitude estimate of the
the assumption of small deviations, switched to the finitecharacteristic relaxation time required for the interface to
Fourier transform¢,= Agol fdxdyexpk-x)£(x) where x reach its steady-state position. One can argue that while the
=(x,y) and k=(kyk,), and applied Parseval's theorem. interface is displacing with a speed/dt, the vi.scous-shea.r
The constani, is the initial interface area. The key step Stressy| Vu|~ nka{/dt produced by the associated flow will
that allows Onsager theory to become applicable is the linexactly balance the surface-tension fored€¢ driving the
earization of the square root which requires that)?<1; flow. Since dominant wave numbeksof the interface dis-

i.e., only when the interface displacement remains muctplacement will correspond to a characteristic pore dimension

smaller than pore sizes will Onsager theory apply. /¢, we can takek=1//; and thus obtain a characteristic
Upon taking the time derivative of E¢L8) and using Eq. relaxation timet. of

(15), Eq. (14) takes the form

%f dxdy

=

=A§O

1+= Ek‘, k2|§k|2>, (18

N

te=/cnlo. (23

z—tS=XiJi+; Xed gk » (29 For the tyeizpal range of vaIL_Jeéc< 104 [rl, 7<10 2 Pas,
ando=10 - Pam, we obtain that,<10 “ s. In usual ap-
plications, the applied forces are varying over time scales
considerably longer thaty, in which case the steady-state
) laws J=LX are appropriate.
o= — oAk 4 and Jy=7 (20) One may correctly object that even when no applied
& T oK sk forces act, the fluid interface in the pores of a rock can never
be characterized as being plan@his would violate the
Thus, for the special case of an initially flat interface, wecontact-line boundary condition that fixes the contact angle
have identified the appropriate state variabjgsequired by ~ between the two fluids and the solid-grain surfacéius, in
the Onsager theory. The most general linear relationship béhe Appendix the more realistic case where interface dis-

where the interface forces,, and fluxes],, are defined

tween these fluxes and forces is then placements from an initially curved interface may occur is
treated. Upon consulting the Appendix, it is seen that the
J T M\/X results for an initially curved surface are similar to those
( z( )( ) (21)  when the interface is initially flat.
I/ \MT QX

V. COMPARISON WITH CASES OF LARGE INTERFACE

where the force vectorX and X, have componentX; and
DISPLACEMENTS

X respectively, and likewise for the current vectdrand

J;. The matrixL is a 2x2 permeability matrix controlling In the case of low saturation of nonwetting fluid, the lin-
the flow when no interface forces a@ero surface tension ear Darcy laws may not be appropriate. As demonstrated by
and is thus quite distinct from the fixed-interface permeabili{3,18,19, the nonwetting phase may, at low concentrations,
tiesL of Sec. Ill that are defined when the surface tension igorm bubbles that get stuck in the medium. The nonwetting
infinite. The matrixM has dimensions 2K, whereK is the  phase is thus discontinuous and no flow of this phase is
number of different wave numbers, whi@@is aK XK ma-  possible before the forcing is increased above some thresh-
trix. We have used Onsager reciprocity in writinf instead  old X, that allows the nonwetting phase to pass through the
of some arbitraryK X2 matrix. Onsager reciprocity also constricting pore throats. One might anticipate that when
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J, s o
' S T g Fluid 1
/ /—, Fluid2  ox
/ / FIG. 4. A fluid interface with surfactants in a velocity field. The
Xj surfactant molecules have two ends, one that tends to be in fluid 1
(O) and one that tends to be in fluid X{.
Fluctuations T LI?;dag(l)}(/i;r?;Ilg{lcesar N 3
i ieaniiiEodynamios trar?s’;g;f‘f;ws tions, Onsager’s theory only applies in situations of linear
reversible interface deformation.
FIG. 3. Linear laws relating fluxes and forcesX showing how The numerical work of Olson and Rothm@h9] shows
sufficiently large forces can, ultimately, violate the regression hy-that reciprocity holds to within the error of their simulations
pothesis. even when the macroscopic laws appear to be nonlinear. Un-

der the circumstances this is rather remarkable. As shown
|X—X,| is small, the flows could have a power-law depen-here' Onsager theory can shed no light on such behavior.
dencel X— X|” with linear dependence only emerging| x$
becomes much larger thaX|. Although the simulations of VI. SYMMETRY ACROSS COMPLEX INTERFACES:
[19] hint at such behavior, no firm justification can presently EFFECTS OF SURFACTANTS
be given. Furthermore, when the nonwetting fluid is discon- . . . . .
tinuous, the pressure gradient it experiences cannot be inde- N this section the Onsager theory is applied to interfaces

pendent from that on the wetting fluid. Hence, laws of theWith surfactants on them. In this case, the fluid flow will

form Eq.(L), which are limited to the case where both phasescreate spatial variations in the density of surfactants on the

continuously span the medium, are not in their most funda/Nterface, and the surface tension, which depends on the sur-

mental form. (In the simulations of Rothman, the macro- factant density, will vary accordingly. This situation is illus-

scopic forces can be independently applied to each fluid rdrated in Fig. 4. The surface-tension gradients correspond to

gardless of the connectivity. a tangential interface force that acts on the surrounding fluid

As noted previously, Onsager's regression hypothesis iLn addition to the normal force due to the changes in surface

the key that allows the time-reversal symmetry of the mo-curvature. The tangential forces will modify the interaction

lecular dynamics to be related to the macroscopic transpoRG"tWeen the two fI_wds as dgscnbed by th_e cross-coupling
terms. While small interface displacements in the absence of

laws. For our case of piston reservoirs driving flow through a . i
grfactants left the steady-state viscous cross-coupling term

sample as depicted in Fig. 1, the regression hypothesis sa h 4. th " d di h
that when the springs are totally relaxed and the system is ifj12 Unchanged, the tangential forces due to gradients in sur-
actant density will modifyl ;.

equilibrium, the spontaneoythermally induced fluctuation . . .
g P u y 4 Writing down the energy contained in the surfactant gra-

in either the piston position or the fluid-interface position . ) :
will, on average, decay back to their equilibrium positionsd'ents’ and assuming th«_a f|OW doe_s_not create gradlents_that
according to the macroscopic flow laws. go beyond I_mear approximations, it is possible to deFermlne
Due to their small magnitude, the average decay of fluc:[he mgchanlcal gffect of the !nterface surfactant grad_|ents on
éhe fluid bulk. It is then possible to follow the same lines as

tuations is described by linear hydrodynamics. Hence, th ; ; . . . :
regression hypothesis can only link fluctuations dndar the preceding section to show that reciprocity still holds in
the presence of surfactants.

hydrodynamic flow on the macroscopic scale. Any nonlin- ) . . .
Y 4 P y In order to do this, we first need to identify the surface

earity in the description of the macroscopic flow will make : X : . .
the regression hypothesis useless. Figure 3 illustrates the digheray associated with the grad|e_nts in the surfactant density.
We start from the balance equation for the surface number

ferent possible flow regimes. Only for the two regimes of the i
weakest force levels may the regression hypothesis be afl€nsityl’s of surfactan{20]
plied and theoretical statements on reciprocity made.

In the figure we allow for the possibility that even when E
something as locally nonlinear as a bubble breakup occurs, it at
is possible that the flow still might average to give linear
macroscopic lawdat least approximately However, be- The source ternj, represents the flow of surfactant onto and
cause it is enormously improbable that bubble breakup ocaway from the interface. In order to identify the energy cor-
curs spontaneously from equilibrium fluctuatiofsuch  responding to dixed amount of surfactant on the interface,
breakup arises when the flow is driven by externally com-we discardj,,. Hence the energy will correspond to the work
pressed springsthere is no reason to expect the linear slopethe interface can do on the surrounding fluid during a time
in such a macroscopic law to be the same as that correspondhich is sufficiently short that the surfactant loss from the
ing to linear hydrodynamics and averaged fluctuations. Sincaterface is negligible. We are left with the conservative ver-
nonreversible fluid redistributions driven by external springsion of Eq.(24). Further, the tangential fordg acting on a
forces can never be achieved through spontaneous fluctuanit area of interface is simply the gradient in surface tension

+V.js+j,=0. (24)
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f=Vo. (25) Thus, thedl'g will serve as state variables in the Onsager
theory. Since the force is linear il and since the flux is

This force is related to the fluid stress tenJoby the rela-  the time derivative ofI'g, the Onsager theory is applicable.
tion fs-t=n-[T]-t where[ ] denotes the difference across  Allowing for interface displacement, there are now three
the interface and is an arbitrary tangent vector. separate mechanisms which will carry out work on the fluids.

We will assume that the deviations from the equilibrium These are the springs, the relaxation of the interface, and the
concentrationl’y are small, i.e., thal's=I"g+ éI'g where  decay of surfactant gradients. The most general linear rela-
|6T¢|<T 4. This justifies the following linearizing approxi- tions between the corresponding fluxes and forces now take
mations for the surface force and the surfactant velagjty  the form

fe~o'(Fg)Vol,, J oW X
(26) J; :<M’T Q’) Xe |, (33
_ J_S~ J_s Jr Xy
*Ts Ty’ where the new matrixelsl’ andQ’ play the same role as in

Eq. (21), but where they now include the effect of the sur-
factants M’ andQ’ act on the couplexg,XF)T. As before

‘the 2x 2 matrixL acts only onX. Assuming a steady state,

whereo’(Fo)E&olaﬂF:po. The velocityus is the average

velocity of the surfactant molecules relative to the solid ma
trix.

The surfactant energy associated witlh' afield is given S0 that
as E;=[dW where the workdW is done in a relaxation J;
process wheré&'g goes to a constant value. The watkV is (J ) -0 (34)
done by the interface surfactant on the surrounding fluid on a r

small surface elememtS. It can be written
we can proceed exactly as in Sec. IV to eliminate the forces

dW=(f,d9)-dx=(fsdS)- udt. (27) X, andX to get
Using the approximation&6), the energy can be written J=L'X, whereL’'=L—M Q' M. (35)
O'/ I H —0O/
ES:J AW ( 0)f dtf dsj.Vor.. (29 Now, since the Onsager theory ensures@é=Q’', we get
Iy the final result

Requiring the system to be materially clos@e., =0 on L'=L"T. (36)
the contact-line boundaries of the interfaca partial inte-

gration gives By this we have shown that within the regime of linear re-

sponse, reciprocity holds even when surfactant concentration

o' (Tp) _ gradients cause tangential interface forces to act on the fluid
Es=——F f dtf dSoI'sV -js. (290 interface. We note as well that from a different perspective,
0 one could define the changes in surfactant work as the prod-
Equation(24) now gives uct of the surfactant chemical potenttal with local changes

in the surfactant number densities along the interface. The
) 6T o' (Ty) a5F§ equivalence of this definition with the one given above is due
=T JdSJ dtol's——=—>r J’dSJ dt—- to the thermodynamic relatiodo=—T dus that relates
0 0 changes in chemical potential to changes in surface temsion
o' (Ty) ) for single-surfactant isothermal systef24].
2T, de&FS, (30) In showing the resul(36) Onsager theory has proved
quite convenient. However, the result could also have been

where we have carried out the time integration assuming th&abtained by means of the hydrodynamic equations. The On-
oT's decays from its initial value to zero. Switching to the Sager analysis is limited to cases where deviations in the
spatial Fourier transform just as in Sec. IV, applying Parsesurfactant concentrations are sufficiently small that the re-

val's theorem, and taking the time derivative, we get the ratéPonse is linear in the applied force. Boghoséral. [22]
of surfactant work have recently introduced cellular automata models that in-

clude hydrodynamics, surface tension, and surfactants. Such
a'(Fo)Asp . models may provide efficient means to empirically investi-
Es=- F—o zk: O g Ol g 31 gate the regimes of nonlinearity for which the present analy-
sis remains silent.

where, as beforek is the wave number. The surfactant fluxes

Es

and forces may now be identified as VIl. CONCLUSIONS
"(Tg)A We have demonstrated that the Darcy laws given in Eq.
XF:_U(—O_G"ngs and Jy=oTs. (32) (2) satisfy reciprocity up to linear order in the external

T forces. The domain of the linear laws is limited by the lin-
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earity of the interface deformation. Hence dynamic satura- o _

tion dependence, as is often the case in practical applications, X, ==[V?+&{] and J,=¢. (A4)
violates linearity in a strict sense. It is observed, however, T

that apparently linear flux force relations hold well beyond i ) )
what would be expected from these considerat[@8,19. As requwed by the Onsager theory,_ the mterface force is
In order to bridge the gap between the present results arfff’€@r in the state parameteféx,y) while the interface flux
those of irreversible fluid front motion, further experimental iS the time derivative of the state parameter. Thus, the proper

or numerical effort is neede@3,24. fluxes and forces to be used in the transport laws have been
identified.
The Onsager theory can now be used to write the linear
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APPENDIX: TRANSPORT LAWS

WHEN THE INITIAL FLUID INTERFACE IS CURVED J (X Y)=Ma(Xy) X1+ Ma(X,y) X,

In this appendix, we use the Onsager theory to establish o L, "dy’
the transport laws for the general case where the iritizio | QU YIX" Y )X X",y hoh (AS)
force) fluid interface is curved. A system of “normal coor- oy

dinates” (x,y,2) is introduced in whichx andy are still \\here the theory also provides the symmetry
orthogonal but are now curvilinear coordinates tangent to the

curved initial interface and possessing metrical coefficients QX YIX",y ) =Q(X",y'|x,y). (AB)
(units of inverse lengthh,=h,(x,y,z) andhy,=hy(X,y,2).

The coordinatez measures distance normal from the initial An inverse kerneQ ! is defined by the operation
interface position and thus has a metrical coefficient 1.

Surface properties associated with these coordinates are de- . , 1 - Yol
fined in Ref.[4]. S(x=x",y=y") = [ Q7 xy[x",y")Q(x",y"|x",y")
It is easy to show}25] that the rate at which the interface
area is changing is given as dx'dy”
X (A7)

hX”hy" '

dA{_ dxdy dg
o f g (A1)

= (H—H . : . . . .
dt hchy with & being the Dirac delta. Thus, if EGA5) is multiplied
by Q ! and integrated over=0, the interface forc, can
whereH=H(x,y,t) is the mean curvatur&he sum of the be identified as

two eigencurvaturgsat each point on the surfaee= { while

Ho is the mean curvature of the initial interfaze-0. The . dx'dy’
integral is over the initial surface. In Ré#] it is shown that Xg(x,y)=X1f Q H(xyIX"y )My (x",y") -t
when the displacements are small compared to the initial X'y
curvature so that only terms linear ihare retained irH, dx'dy’
then +X2f Q HxYIX" .y IMa(X"y")
hy/hy,
H=Ho—(V2(+£%), (A2) 'y’
+f QX YIX,y ) I (X",y") . (A8)

where both the coefficienf(x,y) and the initial curvature x/Hy’

Ho(x,y) are defined entirely by the metrical coefficients as . i

given in Ref.[4]. The linearization oH is the key step that In principle, one COUId_ sol\(e faf(x,y. 1) using Eq.(AS) f(_)r

allows Onsager theory to become applicable. ?]gz &g/a’;. If the resulting linear ex_pressu.)n_m1 andX, is
The first law then takes the form inserted into EqQ(A8), X, can be entirely eliminated from the

laws for J; and J,. In the steady-state limit wher&,={¢
=0 (i.e., t>t.), this task is made trivial and the transport

d_S:X_J_J,_EJ dXdy[V2§+ 525]% (A3) laws become
dt "' 1) hihy dt’

S
Thus, for each elemenk(+dx,y+dy) of the surfacez=0, J, L, Lo/ \ Xy’

we can identify an interface forcé,(x,y) and an interface
flux J,(x,y) as where the steady-state transport coefficients are defined
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L11:~11_Jw M
Ny Jhyshy,
XMa(x,y)Q™H(x,y[x",y )My(x",y"), (A10)
L12:~12_J¥ M
Ny Jhyshy,
XMa(x,y)Q H(x,y[x",y )Ma(x"y"), (A1)

- dxdy [ dx'dy’ 1 .
L22: Lzz_f W —Mz(XyY)Q (X,y|X 1y )
Ay ) hyhy
XMy(x",y"). (A12)

Thus, so long as the interface displacement remains small
relative to pore sizes, reciprocity is seen to hold.
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