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Reciprocity and cross coupling of two-phase flow in porous media from Onsager theory
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The symmetry properties of the permeability matrix in the macroscopic transport law for two-phase immis-
cible flow in porous media are investigated. The porous medium is treated as a single, closed thermodynamic
system being forced by piston reservoirs. This construction is used to relate the Darcy fluxes to the time
derivatives of the piston motion, and to identify the fluxes and forces in the Onsager sense. When the surface-
tension forces that develop on the fluid interface are linear in the interface displacement, Onsager’s theory is
directly applicable and the permeability matrix must be symmetric. This argument is extended to show that
reciprocity still holds when surfactants modify interface properties.@S1063-651X~99!08310-5#

PACS number~s!: 47.10.1g 47.11.1j, 05.40.2a,
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I. INTRODUCTION

The linear Darcy laws governing two-phase flow in p
rous media have recently received broad attention—b
theoretically@1–4# and experimentally@5–10#. These laws
have the conventional form

Ji5(
j

k i j ~f!

h i
f j , ~1!

where i and j label the phases and the fluid currentsJi are
linked to the pressure gradients, or forces,f i , via the perme-
abilities k i j and fluid viscositiesh i . Two main issues have
been addressed in the literature: the range of validity of th
linear Darcy equations and the question of whether the
sager reciprocity relationk i j /h i5k j i /h j holds.

While continuum theory based on the Stokes equa
@2,4# has been used to address these questions, it is of t
retical interest to show that Onsager theory@11–13# applies
directly. This approach is also mathematically simpler th
the techniques based on the continuum equations. As an
ample of this~relative! simplicity of application, we discuss
the cases where the interfaces are allowed to move rever
and where the interfaces have surfactants on them.

In order to apply Onsager theory@13#, two theoretical
components is needed. First, the entropy production in te
of the forces and fluxes~here f i andJi) is needed. Second
the fluxesJi must be identified as time derivatives of sta
variables characterizing the system on the level of coa
graining used. Being able to identify appropriate state v
ables is the crux of any application of Onsager’s theore
Here, this is accomplished by interpreting the driving pr
sures as forces that stem from external spring-piston dev

The present paper complements the study in Ref.@4#,
which is based on the appropriate Stokes boundary-v
problem. The theoretical approach is fundamentally diff
ent, but the main results are the same, save for the pre
application to the case where the fluid-fluid interface dyna
ics is complicated by the presence of surfactants.
PRE 601063-651X/99/60~4!/4130~8!/$15.00
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II. REVIEW OF ONSAGER’S THEORY

Before we consider the reciprocity associated with o
specific problem in two-phase hydrodynamics, we fi
briefly review the basic requirements and results of the g
eral Onsager theory@11,12#. A particularly clear and succinc
review of the derivation has been given by de Groot@13#. In
the simplest version, the theory deals with closed syste
not far from equilibrium and described by a set of variab
$ai% that describes deviations from equilibrium. The theo
addresses the symmetry properties of macroscopic lin
transport laws having the form

Ji5Li j Xj , ~2!

whereXi is a force that induces a currentJi and where the
Li j ’s are constant coefficients. Summation over repeated
dices is implied both here and throughout. When the indi
refer to the fluid phases they take the valuesi 51,2. The
force Xi is required to be conjugate to the currentJi in the
sense that

Xi5
]S

]ai
and Ji5ȧi , ~3!

where S5S($ai%) is the entropy of the system. For th
theory to apply,ai must be small enough that the force
well approximated byXi5(]2S/]ai]aj )0aj where the 0 sub-
script denotes the equilibrium state in whichai50 for all i;
i.e., the theory requires the force to be linear in the st
parametersai . The entropy productionṠ, which is positive
in a closed system, takes the form

Ṡ5
]S

]ai
ȧi[JiXi . ~4!

Thus, the definition of the appropriate currents and for
can also come from working out an analytical expression
the entropy production rather than determining the funct
S($ai%) directly. Given these requirements on the curre
and forces, the theory provides the fundamental result
4130 © 1999 The American Physical Society
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PRE 60 4131RECIPROCITY AND CROSS COUPLING OF TWO-PHASE . . .
Li j 5L ji . ~5!

The remarkable aspect of the Onsager theory is that the r
Eq. ~5! is not based on any particular macroscopic prope
of the system, but is only a result of the time-reversal sy
metry of the underlying microscopic equations of moti
~Newton’s laws or the Schro¨dinger equation!. The laws of
Eq. ~2! may thus describe almost any kind of linear respo
that produces entropy.

We wish to emphasize the following point. The conne
tion between microscopic dynamics and macroscopic tra
port is made through the so-called ‘‘Onsager regression
pothesis.’’ This states thatmicroscopic fluctuations in ai ,
when averaged, decay in time according to the same la
Eqs. (2), that control the macroscopic transport.Onsager
@11#, deGroot@13#, and others have traditionally present
this connection as an additional postulate of the theo
However, it is a simple exercise@14,15# to show that the
regression hypothesis is generally valid whenever the ex
nal forces applied to the system are sufficiently small to w
rant linear decay laws. The average in the statement of
regression hypothesis is an equilibrium ensemble ave
constrained so that the system is in a definite state at s
definite initial time. The regression hypothesis is a fund
mental law of linear-response theory equivalent to
fluctuation-dissipation theorem.

A useful fact easily proven is that any linear recombin
tion of the forces and fluxes that leaves Eq.~4! invariant will
also possess linear laws of the form Eq.~2! that satisfy Eq.
~5!. Moreover, the system may be described in any num
of variables so long as Eq.~4! and Eq.~2! are fulfilled.

III. THE FIXED-INTERFACE CASE

We begin with the simplest case where the interface
tween the two fluids is kept fixed since this will bring out th
key parts of the argument and pave the way for the m
realistic case where interface deformation is permitted.
‘‘fixed interface’’ we mean simply that the interface retai
its shape when force levels are changed; however, the
molecules attached to the interface will, in general, be m
ing along parallel with the interface. Physically this corr
sponds to assuming an infinite capillary number.

In order to describe a Darcy flow which is driven by e
ternal pressure gradients within the framework of the ab
theory, we have devised a system of springs and piston
shown in Fig. 1. The purpose of this thought construction
to create a closed system for which the state variables$ai%
required by the Onsager theory are easily identifiable. T
springs shown are assumed to have a long enough relax
time for the system to remain close to a hydrodynam
steady state. For simplicity, the piston cross sections
taken to be equal to the cross section of the porous sampA
so that

Ji52ai̇ ~6!

is precisely the volume of fluidi crossing unit area of the
porous material in unit time whereȧi represents the rate o
piston displacement. The minus sign arises becauseai is
measuring distance to the piston from the piston position
ult
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the totally relaxed state. It is also implicitly assumed that
resistance to flow comes from the porous material its
which is equivalent to assuming that the ‘‘pipes’’ connecti
the porous material to the piston chambers in this thou
construction have large diameters.

We now determine an expression for the entropy prod
tion in the porous system, i.e., the system shown in Fig
excluding the pistons and springs. This is a forced noneq
librium system and the global Gibbs relation has the stand
form

TdS>dE1dW, ~7!

whereS is the entropy,E the internal energy of the fluids
anddW the work performed by the fluids. Being an inequa
ity we cannot use this relation to determine the entropy p
duction. In order to obtain this we shall need to employ t
assumption of alocal equilibrium and the corresponding lo
cal Gibbs relation@16#

Tds5d«1p dv̂, ~8!

wheres and« are the entropy and energy per unit mass wh
p is the pressure andv̂51/r is the specific volume wherer
is the mass density. The conservation of mass can be wr
rdv̂/dt5“•u whereu is the local flow velocity and so the
usual assumption of incompressible flow allows the press
work term to be neglected. Under such conditions,s is a
function of « alone so that

]s

]t
5

]s

]«

]«

]t
5

1

T

]«

]t
. ~9!

Becauser is constant in time for incompressible flow, th
entropy production can then be expressed

dS

dt
5E dV

]~rs!

]t
5E dV

1

T

]~r«!

]t
'

1

T̄

dE

dt

2E dV
DT

T̄2

]~r«!

]t
, ~10!

where the integration is taken over the entire system with
springs and pistons excluded and we have performed a T

FIG. 1. Two fluid phases inside a sample of porous materia
lengthL and cross-sectional areaA. The porous material itself is no
shown. The driving forces giving the external pressure gradients
represented by the springs acting on the pistons. The total pis
sample system is energetically and materially closed. The ave
macroscopic flux of each fluid is given by the time rate of change
the piston displacementsa1 anda2.
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4132 PRE 60EIRIK G. FLEKKO”Y AND STEVEN R. PRIDE
lor expansion inDT5T2T̄, whereT̄ is the average tempera
ture. The last term in Eq.~10! describes the entropy produc
tion caused by the internal heat flow in the system.~Writing
the energy change]r«/]t in terms of Fourier’s law it can be
shown to give a positive definite contribution to the entrop!

Since it is of relative orderDT/T̄ compared to thedE/dt
term it can be neglected whenever temperature variations
moderate. We have thus identified the condition under wh
Eq. ~7! becomes an equality withdW50. Note, however,
that the total system~fluids plus pistons and springs! is not
changing reversibly. In that case the entropy product
would have been zero, which it is not. The system evol
through nonequilibrium states, and only the assumption
local equilibrium allows the entropy to be computed.

The rate at which the springs perform work in moving t
pistons is simply the product of the piston velocity2ȧi and
the spring forceksai where ks is a spring constant. This
power is simplydE/dt, the energy per unit time put into th
porous sample. We assume that the inertial forces produ
as the springs relax are negligible compared to the driv
forces so that changes in kinetic energy are negligible c
pared to this spring power. The entropy production may th
be written as

dS

dt
52ks

ai ȧi

T̄
. ~11!

From this equation it may also be noted that a revers
change of the system, under whichdS/dt50, corresponds to
theks→0 limit. Thermodynamic forcesXi and fluxesJi sat-
isfying the requirements of Onsager’s theory may be ide
fied directly from Eq.~11! as

Xi5
ks

T̄
ai and Ji52ȧi . ~12!

Having made this observation we see that the general
Eq. ~2! takes the specific form of the two-phase Darcy la
Eq. ~1! with the identificationLi j 5T̄kk i j /(h iAL) where the
factor of T̄/(AL) arises becausef i in Eq. ~1! is the applied
force per unit volume of porous material so thatf i

5T̄Xi /(AL). Since the conditions for the Onsager theo
have been met, we immediately can write

k12

h1
5

k21

h2
, ~13!

which completes the proof that permeabilities are recipro
in the fixed-interface case. Though we have appealed
specific mechanical device~the pistons and springs!, the reci-
procity result obtained in this simple argument is perfec
general because our ideal devices are outside the system
ing treated. A comparison of the above three-line argum
to the relatively more involved analysis based on Stoke
equation@4# demonstrates one of the great advantages in
ing Onsager’s theorem.
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IV. THE FLEXIBLE-INTERFACE CASE

We now consider the case when interfaces are free
change shape. For the Onsager theory to apply, the resp
must remain linear in the force. Thus, phenomena such
burstlike changes in the interface cannot be treated this w
What can be treated are small elastic deformations of
interface. In this case, the interface displacement is both
ear and reversible in the applied force. In Ref.@4#, a condi-
tion is given on the amount of local capillary-pressure var
tion that can be experienced before contact lines move
what follows, we assume that such a condition is respec
and that the interfaces~meniscii! may stretch without signifi-
cant movement of the contact lines.

Figure 2 shows an interface close to equilibrium, alo
with the variables by which the interface is described. T
dashed line denotes the interface positionz50 at zero forc-
ing, while the solid line denotes the positionz5z after a
normal displacement from equilibrium. The coordinatesx
andy lie along the interface.

In identifying the entropy production, the difference fro
the fixed-interface case is that now not only the pistons,
also the fluid interface will perform work on the fluids. B
the fluid interfacewe always mean the layer of molecule
which is affected by the presence of the molecules of
other fluid. By choosing to consider the interface togeth
with the pistons as being external relative to the fluid bu
we do not have to consider the internal entropy change
the springs or the configurational entropy changes of the
terface. Only the mechanical effect on the fluid bulk will b
important, and the entropy production will, as before, be d
to viscous heating in the fluids alone. We will take the sa
approach when studying interfaces with surfactants. The
ergy balance can thus be written

T̄XiJi2dEz /dt5T̄dS/dt, ~14!

where Ez is the total surface energy of the interface. T
left-hand side represents the energy put into the fluids
unit time due to the work of the pistons and interface wh
the right-hand side represents the manner in which the
compressibly flowing fluids store such energy; namely,
heat. As throughout the entire paper, viscous forces are
sumed to dominate inertial forces so that changes in the
netic energy are negligible relative to the heat producti
The interface energyEz goes as

Ez5s Az , ~15!

where Az is the total interface area ands is the surface
tension@17#. The problem now is to characterize the chang

FIG. 2. The surfacez5z(x,y) represents the position of th
fluid interface at any instant while the initial interface position
denoted byz50. The coordinatesx andy denote position along the
initial interface.
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PRE 60 4133RECIPROCITY AND CROSS COUPLING OF TWO-PHASE . . .
in interface area using variables that can be identified as s
parameters$ai% in the Onsager theory.

We now treat the special case where the interface
plane before the springs begin to act~so thatx and y are
Cartesian coordinates!. The analysis is particularly straigh
forward and instructive for this case. The general case wh
the initial interface is an arbitrarily curved surface is trea
in the Appendix and gives similar results. Using a we
known expression for surface area, we have

Az5E dxdyA11~“z!2 ~16!

'E dxdyF11
1

2
~“z!2G ~17!

5Az0S 11
1

2 (
k

k2uzku2D , ~18!

wherez5z(x,y) represent the displacements from the init
planez50 and where the integral is over the initial plane.
these expressions we have expanded the square root
the assumption of small deviations, switched to the fin
Fourier transformzk5Az0

21*dxdyexp(ik–x)z(x) where x
5(x,y) and k5(kx ,ky), and applied Parseval’s theorem
The constantAz0 is the initial interface area. The key ste
that allows Onsager theory to become applicable is the
earization of the square root which requires that (“z)2!1;
i.e., only when the interface displacement remains m
smaller than pore sizes will Onsager theory apply.

Upon taking the time derivative of Eq.~18! and using Eq.
~15!, Eq. ~14! takes the form

dS

dt
5XiJi1(

k
XzkJzk , ~19!

where the interface forcesXzk and fluxesJzk are defined

Xzk52
sAz0k2

T̄
zk and Jzk5 żk . ~20!

Thus, for the special case of an initially flat interface, w
have identified the appropriate state variableszk required by
the Onsager theory. The most general linear relationship
tween these fluxes and forces is then

S J

Jz
D 5S L̃ M

MT Q
D S X

Xz
D , ~21!

where the force vectorsX andXz have componentsXi and
Xzk , respectively, and likewise for the current vectorsJ and
Jz . The matrixL̃ is a 232 permeability matrix controlling
the flow when no interface forces act~zero surface tension!
and is thus quite distinct from the fixed-interface permeab
tiesL of Sec. III that are defined when the surface tension
infinite. The matrixM has dimensions 23K, whereK is the
number of different wave numbers, whileQ is a K3K ma-
trix. We have used Onsager reciprocity in writingMT instead
of some arbitraryK32 matrix. Onsager reciprocity als
te
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gives thatQT5Q. It is the matricesM and Q that properly
allow for the presence of surface tension.

Combining the two equations in Eq.~21! by eliminating
Xz allows the macroscopic flux to be expressed

J5LX1MQ21Jz , where L5L̃2MQ21MT. ~22!

The coefficient matrixL controls the macroscopic flux whe
the interface has reached its steady-state position at w
time Jz[żk50. The steady-state matrixL can be identified
as the fixed-interface matrix considered previously. The m
trix L̃ describes the unphysical case of fluid-fluid coupling
the absenceof surface tension.

The only effect of the interface having moved a sm
distance to a new steady-state position is to change v
slightly the relative permeabilities. Since such a slig
change in permeability is proportional toX, the effect of a
steady-state interface displacement is to produce a quad
force term in Darcy’s law. Thus, in the purely linear law
considered here, the steady-state transport matrixL is the
same as if the interface remained fixed.

We now make an order-of-magnitude estimate of
characteristic relaxation time required for the interface
reach its steady-state position. One can argue that while
interface is displacing with a speed]z/]t, the viscous-shea
stresshu“uu'hk]z/]t produced by the associated flow wi
exactly balance the surface-tension forcessk2z driving the
flow. Since dominant wave numbersk of the interface dis-
placement will correspond to a characteristic pore dimens
l c , we can takek51/l c and thus obtain a characterist
relaxation timetc of

tc5l ch/s. ~23!

For the typical range of valuesl c<1024 m, h<1022 Pa s,
ands>1022 Pa m, we obtain thattc<1024 s. In usual ap-
plications, the applied forces are varying over time sca
considerably longer thantc , in which case the steady-sta
laws J5LX are appropriate.

One may correctly object that even when no appl
forces act, the fluid interface in the pores of a rock can ne
be characterized as being planar~this would violate the
contact-line boundary condition that fixes the contact an
between the two fluids and the solid-grain surfaces!. Thus, in
the Appendix the more realistic case where interface d
placements from an initially curved interface may occur
treated. Upon consulting the Appendix, it is seen that
results for an initially curved surface are similar to tho
when the interface is initially flat.

V. COMPARISON WITH CASES OF LARGE INTERFACE
DISPLACEMENTS

In the case of low saturation of nonwetting fluid, the li
ear Darcy laws may not be appropriate. As demonstrated
@3,18,19#, the nonwetting phase may, at low concentratio
form bubbles that get stuck in the medium. The nonwett
phase is thus discontinuous and no flow of this phase
possible before the forcing is increased above some thr
old Xc that allows the nonwetting phase to pass through
constricting pore throats. One might anticipate that wh
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4134 PRE 60EIRIK G. FLEKKO”Y AND STEVEN R. PRIDE
uX2Xcu is small, the flows could have a power-law depe
denceuX2Xcun with linear dependence only emerging asuXu
becomes much larger thanuXcu. Although the simulations of
@19# hint at such behavior, no firm justification can presen
be given. Furthermore, when the nonwetting fluid is disc
tinuous, the pressure gradient it experiences cannot be i
pendent from that on the wetting fluid. Hence, laws of t
form Eq.~1!, which are limited to the case where both phas
continuously span the medium, are not in their most fun
mental form. ~In the simulations of Rothman, the macr
scopic forces can be independently applied to each fluid
gardless of the connectivity.!

As noted previously, Onsager’s regression hypothesi
the key that allows the time-reversal symmetry of the m
lecular dynamics to be related to the macroscopic trans
laws. For our case of piston reservoirs driving flow throug
sample as depicted in Fig. 1, the regression hypothesis
that when the springs are totally relaxed and the system
equilibrium, the spontaneous~thermally induced! fluctuation
in either the piston position or the fluid-interface positi
will, on average, decay back to their equilibrium positio
according to the macroscopic flow laws.

Due to their small magnitude, the average decay of fl
tuations is described by linear hydrodynamics. Hence,
regression hypothesis can only link fluctuations andlinear
hydrodynamic flow on the macroscopic scale. Any nonl
earity in the description of the macroscopic flow will ma
the regression hypothesis useless. Figure 3 illustrates the
ferent possible flow regimes. Only for the two regimes of t
weakest force levels may the regression hypothesis be
plied and theoretical statements on reciprocity made.

In the figure we allow for the possibility that even whe
something as locally nonlinear as a bubble breakup occur
is possible that the flow still might average to give line
macroscopic laws~at least approximately!. However, be-
cause it is enormously improbable that bubble breakup
curs spontaneously from equilibrium fluctuations~such
breakup arises when the flow is driven by externally co
pressed springs!, there is no reason to expect the linear slo
in such a macroscopic law to be the same as that corresp
ing to linear hydrodynamics and averaged fluctuations. Si
nonreversible fluid redistributions driven by external spri
forces can never be achieved through spontaneous fluc

FIG. 3. Linear laws relating fluxesJ and forcesX showing how
sufficiently large forces can, ultimately, violate the regression
pothesis.
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tions, Onsager’s theory only applies in situations of line
reversible interface deformation.

The numerical work of Olson and Rothman@19# shows
that reciprocity holds to within the error of their simulation
even when the macroscopic laws appear to be nonlinear.
der the circumstances this is rather remarkable. As sho
here, Onsager theory can shed no light on such behavio

VI. SYMMETRY ACROSS COMPLEX INTERFACES:
EFFECTS OF SURFACTANTS

In this section the Onsager theory is applied to interfa
with surfactants on them. In this case, the fluid flow w
create spatial variations in the density of surfactants on
interface, and the surface tension, which depends on the
factant density, will vary accordingly. This situation is illus
trated in Fig. 4. The surface-tension gradients correspon
a tangential interface force that acts on the surrounding fl
in addition to the normal force due to the changes in surf
curvature. The tangential forces will modify the interactio
between the two fluids as described by the cross-coup
terms. While small interface displacements in the absenc
surfactants left the steady-state viscous cross-coupling t
L12 unchanged, the tangential forces due to gradients in
factant density will modifyL12.

Writing down the energy contained in the surfactant g
dients, and assuming the flow does not create gradients
go beyond linear approximations, it is possible to determ
the mechanical effect of the interface surfactant gradients
the fluid bulk. It is then possible to follow the same lines
in the preceding section to show that reciprocity still holds
the presence of surfactants.

In order to do this, we first need to identify the surfa
energy associated with the gradients in the surfactant den
We start from the balance equation for the surface num
densityGs of surfactant@20#

]Gs

]t
1“• j s1 j n50. ~24!

The source termj n represents the flow of surfactant onto a
away from the interface. In order to identify the energy co
responding to afixed amount of surfactant on the interfac
we discardj n . Hence the energy will correspond to the wo
the interface can do on the surrounding fluid during a ti
which is sufficiently short that the surfactant loss from t
interface is negligible. We are left with the conservative v
sion of Eq.~24!. Further, the tangential forcefs acting on a
unit area of interface is simply the gradient in surface tens

-

FIG. 4. A fluid interface with surfactants in a velocity field. Th
surfactant molecules have two ends, one that tends to be in flu
(s) and one that tends to be in fluid 2 (3).
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fs5“s. ~25!

This force is related to the fluid stress tensorT by the rela-
tion fs•t5n•@T#•t where @ # denotes the difference acros
the interface andt is an arbitrary tangent vector.

We will assume that the deviations from the equilibriu
concentrationG0 are small, i.e., thatGs5G01dGs where
udGsu!G0. This justifies the following linearizing approxi
mations for the surface force and the surfactant velocityus :

fs's8~G0!“dGs ,

~26!

us[
j s

Gs
'

j s

G0
,

wheres8(G0)[]s/]GuG5G0
. The velocityus is the average

velocity of the surfactant molecules relative to the solid m
trix.

The surfactant energy associated with aGs field is given
as Es5*dW where the workdW is done in a relaxation
process whereGs goes to a constant value. The workdW is
done by the interface surfactant on the surrounding fluid o
small surface elementdS. It can be written

dW5~ fsdS!•dx5~ fsdS!•usdt. ~27!

Using the approximations~26!, the energy can be written

Es5E dW5
s8~G0!

G0
E dtE dSj s•“dGs . ~28!

Requiring the system to be materially closed~i.e., j s50 on
the contact-line boundaries of the interface!, a partial inte-
gration gives

Es52
s8~G0!

G0
E dtE dSdGs“• j s . ~29!

Equation~24! now gives

Es5
s8~G0!

G0
E dSE dt dGs

]dGs

]t
5

s8~G0!

2G0
E dSE dt

]dGs
2

]t

52
s8~G0!

2G0
E dSdGs

2 , ~30!

where we have carried out the time integration assuming
dGs decays from its initial value to zero. Switching to th
spatial Fourier transform just as in Sec. IV, applying Par
val’s theorem, and taking the time derivative, we get the r
of surfactant work

Ės52
s8~G0!Az0

G0
(

k
dGsk dĠsk , ~31!

where, as before,k is the wave number. The surfactant flux
and forces may now be identified as

XG52
s8~G0!Az0

G0T̄
dGs and JG5dĠs . ~32!
-

a

at

-
e

Thus, thedGs will serve as state variables in the Onsag
theory. Since the force is linear indGs and since the flux is
the time derivative ofdGs , the Onsager theory is applicabl

Allowing for interface displacement, there are now thr
separate mechanisms which will carry out work on the flui
These are the springs, the relaxation of the interface, and
decay of surfactant gradients. The most general linear r
tions between the corresponding fluxes and forces now
the form

S J

Jz

JG

D 5S L̃ M 8

M 8T Q8
D S X

Xz

XG

D , ~33!

where the new matrixesM 8 andQ8 play the same role as in
Eq. ~21!, but where they now include the effect of the su
factants.M 8 andQ8 act on the couple (Xz ,XG)T. As before
the 232 matrix L̃ acts only onX. Assuming a steady state
so that

S Jz

JGD 50 ~34!

we can proceed exactly as in Sec. IV to eliminate the for
Xz andXG to get

J5L8X, where L85L̃2M 8Q821M 8T. ~35!

Now, since the Onsager theory ensures theQ8T5Q8, we get
the final result

L85L8T. ~36!

By this we have shown that within the regime of linear r
sponse, reciprocity holds even when surfactant concentra
gradients cause tangential interface forces to act on the
interface. We note as well that from a different perspecti
one could define the changes in surfactant work as the p
uct of the surfactant chemical potentialms with local changes
in the surfactant number densities along the interface.
equivalence of this definition with the one given above is d
to the thermodynamic relationds52Gsdms that relates
changes in chemical potential to changes in surface tensios
for single-surfactant isothermal systems@21#.

In showing the result~36! Onsager theory has prove
quite convenient. However, the result could also have b
obtained by means of the hydrodynamic equations. The
sager analysis is limited to cases where deviations in
surfactant concentrations are sufficiently small that the
sponse is linear in the applied force. Boghosianet al. @22#
have recently introduced cellular automata models that
clude hydrodynamics, surface tension, and surfactants. S
models may provide efficient means to empirically inves
gate the regimes of nonlinearity for which the present ana
sis remains silent.

VII. CONCLUSIONS

We have demonstrated that the Darcy laws given in
~2! satisfy reciprocity up to linear order in the extern
forces. The domain of the linear laws is limited by the li
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earity of the interface deformation. Hence dynamic satu
tion dependence, as is often the case in practical applicat
violates linearity in a strict sense. It is observed, howev
that apparently linear flux force relations hold well beyo
what would be expected from these considerations@3,18,19#.
In order to bridge the gap between the present results
those of irreversible fluid front motion, further experimen
or numerical effort is needed@23,24#.
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APPENDIX: TRANSPORT LAWS
WHEN THE INITIAL FLUID INTERFACE IS CURVED

In this appendix, we use the Onsager theory to estab
the transport laws for the general case where the initial~zero
force! fluid interface is curved. A system of ‘‘normal coo
dinates’’ (x,y,z) is introduced in whichx and y are still
orthogonal but are now curvilinear coordinates tangent to
curved initial interface and possessing metrical coefficie
~units of inverse length! hx5hx(x,y,z) and hy5hy(x,y,z).
The coordinatez measures distance normal from the init
interface position and thus has a metrical coefficienthz51.
Surface properties associated with these coordinates are
fined in Ref.@4#.

It is easy to show@25# that the rate at which the interfac
area is changing is given as

dAz

dt
5E dxdy

hxhy
~H2H0!

dz

dt
, ~A1!

whereH5H(x,y,t) is the mean curvature~the sum of the
two eigencurvatures! at each point on the surfacez5z while
H0 is the mean curvature of the initial interfacez50. The
integral is over the initial surface. In Ref.@4# it is shown that
when the displacementsz are small compared to the initia
curvature so that only terms linear inz are retained inH,
then

H5H02~¹2z1j2z!, ~A2!

where both the coefficientj(x,y) and the initial curvature
H0(x,y) are defined entirely by the metrical coefficients
given in Ref.@4#. The linearization ofH is the key step tha
allows Onsager theory to become applicable.

The first law then takes the form

dS

dt
5XiJi1

s

T̄
E dxdy

hxhy
@¹2z1j2z#

dz

dt
. ~A3!

Thus, for each element (x1dx,y1dy) of the surfacez50,
we can identify an interface forceXz(x,y) and an interface
flux Jz(x,y) as
-
s,

r,

nd
l

es
d

h

e
ts

de-

Xz5
s

T̄
@¹2z1j2z# and Jz5 ż. ~A4!

As required by the Onsager theory, the interface force
linear in the state parametersz(x,y) while the interface flux
is the time derivative of the state parameter. Thus, the pro
fluxes and forces to be used in the transport laws have b
identified.

The Onsager theory can now be used to write the lin
transport laws in the form

J15L̃11X11L̃12X21E M1~x,y!Xz~x,y!
dxdy

hxhy
,

J25L̃12X11L̃22X21E M2~x,y!Xz~x,y!
dxdy

hxhy
,

Jz~x,y!5M1~x,y!X11M2~x,y!X2

1E Q~x,yux8,y8!Xz~x8,y8!
dx8dy8

hx8hy8

, ~A5!

where the theory also provides the symmetry

Q~x,yux8,y8!5Q~x8,y8ux,y!. ~A6!

An inverse kernelQ21 is defined by the operation

d~x2x8,y2y8!5E Q21~x,yux9,y9!Q~x9,y9ux8,y8!

3
dx9dy9

hx9hy9

, ~A7!

with d being the Dirac delta. Thus, if Eq.~A5! is multiplied
by Q21 and integrated overz50, the interface forceXz can
be identified as

Xz~x,y!5X1E Q21~x,yux8,y8!M1~x8,y8!
dx8dy8

hx8hy8

1X2E Q21~x,yux8,y8!M2~x8,y8!
dx8dy8

hx8hy8

1E Q21~x,yux8,y8!Jz~x8,y8!
dx8dy8

hx8hy8

. ~A8!

In principle, one could solve forz(x,y,t) using Eq.~A5! for
Jz5]z/]t. If the resulting linear expression inX1 andX2 is
inserted into Eq.~A8!, Xz can be entirely eliminated from th
laws for J1 and J2. In the steady-state limit whereJz[ż
50 ~i.e., t@tc), this task is made trivial and the transpo
laws become

S J1

J2
D 5S L11 L12

L12 L22
D S X1

X2
D , ~A9!

where the steady-state transport coefficients are defined
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L115L̃112E dxdy

hxhy
E dx8dy8

hx8hy8

3M1~x,y!Q21~x,yux8,y8!M1~x8,y8!, ~A10!

L125L̃122E dxdy

hxhy
E dx8dy8

hx8hy8

3M1~x,y!Q21~x,yux8,y8!M2~x8,y8!, ~A11!
es

s

L225L̃222E dxdy

hxhy
E dx8dy8

hx8hy8

M2~x,y!Q21~x,yux8,y8!

3M2~x8,y8!. ~A12!

Thus, so long as the interface displacement remains s
relative to pore sizes, reciprocity is seen to hold.
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